Respuesta :
Question :-
- The Length of a Rectangular Parking Area is Two times the Width. The Perimeter is 90 yards . Find the Length and Width of the Parking Area .
Answer :-
- Length of Parking Area is 15 yards .
- Width of Parking Area is 30 yards .
Explanation :-
As per the provided information in the given question, we have been given that the Length of a Rectangular Parking Area is Two times the Width . The Perimeter is given as 90 yards . And, we have been asked to calculate the Length and the Width .
Let the Values be like :-
- Length = x
- Breadth = 2x
Now, for calculating the Length & Width , we will use the Formula :-
[tex] \bigstar \: \: \boxed{ \sf{ \: Perimeter \: _{Rectangle} \: = \: 2 \times [ \: Length + Breadth \: ] \: }} [/tex]
Therefore , by Substituting the given values in the above Formula :-
[tex] \dag \: \: \: \sf{Perimeter \: _{Rectangle} \: = \: 2 \: \times \: [ \: Length \: + \: Breadth \: ]} [/tex]
[tex] \longmapsto \: \: \: \sf { 90 \: = \: 2 \: \times \: [ \: x \: + \: 2x \: ]} [/tex]
[tex] \longmapsto \: \: \: \sf {90 \: = \: 2 \: \times \: [ \: 3x \: ]} [/tex]
[tex] \longmapsto \: \: \: \sf {90 \: = \: 2 \: \times \: 3x } [/tex]
[tex] \longmapsto \: \: \: \sf {90 \: = \: 6x } [/tex]
[tex] \longmapsto \: \: \: \sf {x \: = \: \dfrac { \: 90 \: }{6}} [/tex]
[tex] \longmapsto \: \: \textbf {\textsf{ x \: = \: 15}} [/tex]
Therefore :-
[tex] \Longrightarrow \: [/tex] Length = x = 15 yards
[tex] \Longrightarrow \: [/tex] Breadth = 2x = 2 × 15 = 30 yards
[tex] \underline {\rule {210pt} {4pt}} [/tex]
Note :-
- Kindly Scroll the Screen from Right to Left for Better View .