Respuesta :

Answer: C. [tex]\pi[/tex]

=======================================================

Explanation:

The x intercept always occurs when y = 0.

Use the unit circle to determine that [tex]\cos(\theta) = 0[/tex] when [tex]\theta = \frac{\pi}{2} \text{ and } \theta = \frac{3\pi}{2}[/tex]

So if [tex]x = \pi[/tex], then we have

[tex]y = \cos\left(\frac{1}{2}x\right)\\\\y = \cos\left(\frac{x}{2}\right)\\\\y = \cos\left(\frac{\pi}{2}\right)\\\\y = 0\\\\[/tex]

which shows us that [tex](\pi, 0)[/tex] is the location of one of the infinitely many x intercepts for this function.