contestada

18.
Given that sin x =
8
and sin y = , where x and y are acute, find the value of cos (x + y).
17
A.
B.
130
221
140
221
140
204
220
22
C.
D.

18 Given that sin x 8 and sin y where x and y are acute find the value of cos x y 17 A B 130 221 140 221 140 204 220 22 C D class=

Respuesta :

Answer:

B

Step-by-step explanation:

[tex]\sin{x}=\frac{5}{13}, \cos{x}=\sqrt{1-(\frac{5}{13})^2}=\frac{12}{13}[/tex]

[tex]\sin{y}=\frac{8}{17}, \cos{y}=\sqrt{1-(\frac{8}{17})^2}=\frac{15}{17}[/tex]

[tex]\cos(x+y)=\cos{x}\cos{y}-\sin{x}\sin{y}\\=\frac{12}{13}\times\frac{15}{17}-\frac{5}{13}\times\frac{8}{17}\\=\frac{140}{221}[/tex]