Respuesta :
Use constant of variation y =kx i.e
15 gallons k=>17.55
k gallons =17.55/15=1.17
18 gallons k=>21.06
k gallons =21.06/18=1.17
Therefore ans => y=1.17x
15 gallons k=>17.55
k gallons =17.55/15=1.17
18 gallons k=>21.06
k gallons =21.06/18=1.17
Therefore ans => y=1.17x
a direct variation means, the value of the dependent variable,
varies based on the independent variable times some constant,
let us call it "k", so y=kx, whatever k is
so [tex]\begin{array}{cccccclllll} \textit{something}&&\textit{varies directly to}&&\textit{something else}\\ \quad \\ \textit{something}&=&{{ \textit{some value}}}&\cdot &\textit{something else}\\ \quad \\ y&=&{{ k}}&\cdot&x \\ \quad \\ && y={{ (k) }}x \end{array}[/tex]
[tex]\textit{we know for 15 gallons(x), the price(y) is 17.55} \begin{cases} x=15\\ y=17.55 \end{cases} \\ \quad \\ y=(k)x\implies 17.55=(k)15 \\ \quad \\ \textit{we know for 18 gallons(x), the price(y) is 21.06} \begin{cases} x=18\\ y=21.06 \end{cases} \\ \quad \\ y=(k)x\implies 21.06=(k)18 \\ \quad \\ \textit{what is "k"? or constant of variation, solve either above for "k"}[/tex]
once you get what "k" is, plug it back in the original y=(k)x
then, how many gallons can be purchased with 23.40? namely
if y=23.40, what's "x"? put the "k" value found and solve for "x"
varies based on the independent variable times some constant,
let us call it "k", so y=kx, whatever k is
so [tex]\begin{array}{cccccclllll} \textit{something}&&\textit{varies directly to}&&\textit{something else}\\ \quad \\ \textit{something}&=&{{ \textit{some value}}}&\cdot &\textit{something else}\\ \quad \\ y&=&{{ k}}&\cdot&x \\ \quad \\ && y={{ (k) }}x \end{array}[/tex]
[tex]\textit{we know for 15 gallons(x), the price(y) is 17.55} \begin{cases} x=15\\ y=17.55 \end{cases} \\ \quad \\ y=(k)x\implies 17.55=(k)15 \\ \quad \\ \textit{we know for 18 gallons(x), the price(y) is 21.06} \begin{cases} x=18\\ y=21.06 \end{cases} \\ \quad \\ y=(k)x\implies 21.06=(k)18 \\ \quad \\ \textit{what is "k"? or constant of variation, solve either above for "k"}[/tex]
once you get what "k" is, plug it back in the original y=(k)x
then, how many gallons can be purchased with 23.40? namely
if y=23.40, what's "x"? put the "k" value found and solve for "x"