Triangle ABC is a right triangle. The length of one of the legs is 12 centimeters, and the length of the hypotenuse is 20 centimeters. What is the length of the other leg?​

Respuesta :

Answer: 16 centimeters

Step-by-step explanation:

    We will use the Pythagorean theorem to solve. The c variable is the hypotenuse, the a and b variables are the legs.

a² + b² = c²

12² + b² = 20²

144 + b² = 400

b² = 256

b = [tex]\sqrt{256}[/tex]

b = 16

          The length of the other leg is 16 centimeters.

Answer:

The other leg is 16 cm long.

Explanation:

Use the Pythagorean theorem:

[tex]c^2=a^2+b^2[/tex],

where:

[tex]c[/tex] is the hypotenuse, and [tex]a[/tex] and [tex]b[/tex] are the other two sides (legs).

Let [tex]a=12[/tex] [tex]cm[/tex]

Rearrange the equation to isolate [tex]b^2[/tex]. Plug in the values for [tex]a[/tex] and [tex]c[/tex], and solve.

[tex]b^2=c^2-a^2[/tex]

[tex]b2=(20 cm)^2-(12 cm)^2[/tex]

Simplify.

[tex]b^2=400 cm^2-144cm^2[/tex]

[tex]b^2=256 cm^2[/tex]

Take the square root of both sides.

[tex]b=\sqrt{256cm^2}[/tex]

Simplify.

[tex]b=16[/tex] [tex]cm[/tex]