Respuesta :

Answer:

x = 8√2

Step-by-step explanation:

As the opposing side of the angle and the hypotenuse are given, take the sine ratio of the angle.

  • sin 45° = x/16
  • 1/√2 = x/16
  • x = 16 / √2
  • x = 16√2 / 2
  • x = 8√2

Answer:

[tex]\sf x=8{\sqrt{2}[/tex]

Step-by-step explanation:

Trigonometric ratios

[tex]\sf \sin(\theta)=\dfrac{O}{H}\quad\cos(\theta)=\dfrac{A}{H}\quad\tan(\theta)=\dfrac{O}{A}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle
  • H is the hypotenuse (the side opposite the right angle)

Therefore, to find x we need to use the sine trig ratio.

Given:

  • [tex]\theta[/tex] = 45°
  • O = x
  • H = 16

Substitute these values into the formula and solve for x:

[tex]\implies \sf \sin(\theta)=\dfrac{O}{H}[/tex]

[tex]\implies \sf \sin(45^{\circ})=\dfrac{x}{16}[/tex]

[tex]\implies \sf x=16 \sin(45^{\circ})[/tex]

[tex]\implies \sf x=16 \cdot \dfrac{\sqrt{2}}{2}[/tex]

[tex]\implies \sf x=8{\sqrt{2}[/tex]

Otras preguntas