Respuesta :

Answer:

  • 14 units

Step-by-step explanation:

In the question, it is given that a right cone has a diameter of 12 units and volume of 168π units³ and we have to find the height of the cone.

[tex] \: [/tex]

To Find the height of the cone, we must know this formula :

[tex]\\{\longrightarrow{ \qquad{\underline{\boxed {\pmb{\frak { \dfrac{1}{3} \: \pi r^2h ={ Volume_{(cone) }}}}}}}}} \\ \\[/tex]

Where,

  • r refers to the radius of the cone. Here, the diameter is 12, Therefore the radius will be 6 units.

  • h refers to the height of the cone.

Now, we will substitute the values in the formula :

[tex]\\ {\longrightarrow{ \qquad{{ {\pmb{\sf { \dfrac{1}{3} \times \pi \times (6)^2 \times h = 168 \pi}}}}}}} \\ \\[/tex]

Cancelling π from both sides we get :

[tex]\\ {\longrightarrow{ \qquad{{ {\pmb{\sf { \dfrac{1}{3} \times \cancel\pi \times 36 \times h = 168 \cancel\pi}}}}}}} \\ \\[/tex]

[tex]\\ {\longrightarrow{ \qquad{{ {\pmb{\sf { \dfrac{1}{3} \ \times 36 \times h = 168 }}}}}}} \\ \\[/tex]

[tex]\\ {\longrightarrow{ \qquad{{ {\pmb{\sf { \dfrac{36}{3} \times h = 168 }}}}}}} \\ \\[/tex]

[tex]\\ {\longrightarrow{ \qquad{{ {\pmb{\sf { 12 \times h = 168 }}}}}}} \\ \\[/tex]

[tex]\\ {\longrightarrow{ \qquad{{ {\pmb{\sf { h = \frac{168}{12} }}}}}}} \\ \\[/tex]

[tex]\\{\longrightarrow{ \qquad{\underline{\boxed {\pmb{\frak { h ={14 }}}}}}}} \\ \\[/tex]

Therefore,

  • The height of the cone is 14 units .