A small sphere of mass 10 kg
is released from rest at a height of
15.0 m above the ground level.
The sphere experiences a constant
resistive force (due to air
resistance) of magnitude R = 10.0
N.
a) Calculate the speed of the
sphere after it has fallen
through a distance of 5.00 m

bCalculate the speed of the ball just before a it hits the gound.

Respuesta :

Answer:

Approximately [tex]9.39 \; {\rm m\cdot s^{-1}}[/tex] after the sphere has travelled a distance of [tex]5\; {\rm m}[/tex].

Approximately [tex]16.3\; {\rm m\cdot s^{-1}}[/tex] right before touching the ground (a distance of [tex]15\; {\rm m}[/tex].)

Assumption: [tex]g = 9.81\; {\rm N\cdot kg^{-1}}[/tex].

Explanation:

Weight of the sphere: [tex]m\, g = 9.81\; {\rm N \cdot kg^{-1}} \times 10\; {\rm kg} = 98.1\; {\rm N}[/tex], downwards.

Drag on the sphere: [tex]10.0\; {\rm N}[/tex] upwards.

Net force on the sphere: [tex]98.1\; {\rm N} - 10\; {\rm N} = 88.1\; {\rm N}[/tex] downwards.

Acceleration of the sphere: [tex]a = F_\text{net} / m = 88.1\; {\rm N} / (10\; {\rm kg}) = 8.81\; {\rm m\cdot s^{-2}}[/tex].

Apply the SUVAT equation [tex]v^{2} - u^{2} = 2\, a\, x[/tex], where [tex]v[/tex] is the final velocity, [tex]u[/tex] is the initial velocity ([tex]0[/tex] in this case, as the sphere was released from rest,) and [tex]x[/tex] is the distance (displacement) that the sphere has travelled so far.

Rearrange this equation to obtain an expression for [tex]v[/tex]:

[tex]\displaystyle v = \sqrt{2\, a\, x + u^{2}}[/tex].

For example, after the ball travelled a distance of [tex]5.00\; {\rm m}[/tex], [tex]x = 5.00 \; {\rm m}[/tex]:

[tex]\begin{aligned} v &= \sqrt{2\, a\, x + u^{2}} \\ &= \sqrt{2 \times 8.81\; {\rm m\cdot s^{-2}} \times 5.0\; {\rm m} + 0} \\ &\approx 9.39\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].

Similarly, [tex]x = 15.0\; {\rm m}[/tex] right before landing, such that:

[tex]\begin{aligned} v &= \sqrt{2\, a\, x + u^{2}} \\ &= \sqrt{2 \times 8.81\; {\rm m\cdot s^{-2}} \times 15.0\; {\rm m} + 0} \\ &\approx 16.3\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].