mek25
contestada

The difference of the square of a number and 8 is equal to 8 times that number. Find the positive solution.

Respuesta :

Answer:

[tex]2\sqrt{6} +4[/tex]

Step-by-step explanation:

Let x be that unknown number.

From the information given from the question, we can deduce:

[tex]x^{2} -8=8x[/tex]

From here, we can solve for x to find what is the number.

[tex]x^{2} -8=8x\\x^{2} -8x-8=0[/tex] (Quadratic Equation)

From here we can use the Quadratic Formula to solve for x.

[tex]x=\frac{-b+/-\sqrt{b^{2} -4ac} }{2a}[/tex]

In this case,

a = 1, b = -8 , c = -8

We substitute a, b and c to find x.

[tex]x=\frac{-(-8)+/-\sqrt{(-8)^{2}-4(1)(-8) } }{2(1)} \\= 2\sqrt{6} +4[/tex]

(Reject the negative solution)

83758263983639483883