Respuesta :

The y-intercept of the function f(x) is (0, 10/3)

The limits of the function

The function is given as:

[tex]f\left(x\right)=\frac{30}{1+2^{3-x}}[/tex]

As x approaches infinity, we have:

[tex]\lim_{x \to \infty} \frac{30}{1+2^{3-x}}[/tex]

This gives

[tex]\lim_{x \to \infty} \frac{30}{1+2^{3-\infty}}[/tex]

[tex]\lim_{x \to \infty} \frac{30}{1+2^{-\infty}}[/tex]

Evaluate

[tex]\lim_{x \to \infty} \frac{30}{1}[/tex]

[tex]\lim_{x \to \infty} 30[/tex]

As x approaches negative infinity, we have:

[tex]\lim_{x \to -\infty} \frac{30}{1+2^{3+x}}[/tex]

This gives

[tex]\lim_{x \to -\infty} \frac{30}{\infty}[/tex]

Evaluate

[tex]\lim_{x \to -\infty} 0[/tex]

Hence, the limits of the function are [tex]\lim_{x \to \infty} 30[/tex] and [tex]\lim_{x \to -\infty} 0[/tex]

The horizontal asymptote

Remove the denominator

f(x) = 30

Also, set the numerator to 0

f(x) = 0

Hence, the horizontal asymptotes are y = 30 and y = 0

The y-intercept

Set x = 0

[tex]f\left(0\right)=\frac{30}{1+2^{3-0}}[/tex]

Evaluate

[tex]f\left(0\right)=\frac{30}{9}[/tex]

Divide

[tex]f\left(0\right)=\frac{10}3[/tex]

Hence, the y-intercept is (0, 10/3)

How the numerator is related to (b)

The numerator of f(x) is 30.

In (b), we have

The horizontal asymptotes are y = 30 and y = 0

This means that the horizontal asymptotes and the numerator are the same

The graph

See attachment for the graph of f(x)

Read more about functions at:

https://brainly.com/question/12191454

#SPJ1

Ver imagen MrRoyal