1. The figure shows the regular triangular pyramid SABC. The base of the pyramid has an edge AB = 6 cm and the side wall has an apothem SM = √15 cm. Calculate the pyramid: 1) the base elevation AM; 2) the elevation SO; 3) the area of the base; 4) the area of the side surface; 5) the total surface area; 6) volume.

1 The figure shows the regular triangular pyramid SABC The base of the pyramid has an edge AB 6 cm and the side wall has an apothem SM 15 cm Calculate the pyram class=

Respuesta :

Given:

• AB = 6 cm

,

• SM = √15 cm

Let's solve for the following:

• 1) the base elevation AM.

Given that we have a regular triangular pyramid, the length of the three bases are equal.

AB = BC = AC

BM = BC/2 = 6/2 = 3 cm

To solve for AM, which is the height of the base, apply Pythagorean Theorem:

[tex]\begin{gathered} AM=\sqrt{AB^2-BM^2} \\ \\ AM=\sqrt{6^2-3^2} \\ \\ AM=\sqrt{36-9} \\ \\ AM=\sqrt{27} \\ \\ AM=5.2\text{ cm} \end{gathered}[/tex]

The base elevation of the pyramid is 5.2 cm.

• (2)., The elevation SO.

To find the elevation of the pyramid, apply Pythagorean Theorem:

[tex]SO=\sqrt{SM^2-MO^2}[/tex]

Where:

SM = √15 cm

MO = AM/2 = 5.2/2 = 2.6 cm

Thus, we have:

[tex]\begin{gathered} SO=\sqrt{(\sqrt{15})^2-2.6^2} \\ \\ SO=\sqrt{15-6.76} \\ \\ SO=2.9\text{ cm} \end{gathered}[/tex]

Length of SO = 2.9 cm

• (3). Area of the base:

To find the area of the triangular base, apply the formula:

[tex]A=\frac{1}{2}*BC*AM[/tex]

Thus, we have:

[tex]\begin{gathered} A=\frac{1}{2}*6^*5.2 \\ \\ A=15.6\text{ cm}^2 \end{gathered}[/tex]

The area of the base is 15.6 square cm.

• (4). Area of the side surface.

Apply the formula:

[tex]SA=\frac{1}{2}*p*h[/tex]

Where:

p is the perimeter

h is the slant height, SM = √15 cm

Thus, we have:

[tex]\begin{gathered} A=\frac{1}{2}*(6*3)*\sqrt{15} \\ \\ A=34.86\text{ cm}^2 \end{gathered}[/tex]

• (5). Total surface area:

To find the total surface area, apply the formula:

[tex]TSA=base\text{ area + area of side surface}[/tex]

Where:

Area of base = 15.6 cm²

Area of side surface = 34.86 cm²

TSA = 15.6 + 34.86 = 50.46 cm²

The total surface area is 50.46 cm²

• (6). Volume:

To find the volume, apply the formula:

[tex]V=\frac{1}{3}*area\text{ of base *height}[/tex]

Where:

Area of base = 15.6 cm²

Height, SO = 2.9 cm

Thus, we have:

[tex]\begin{gathered} V=\frac{1}{3}*15.6*2.9 \\ \\ V=15.08\text{ cm}^3 \end{gathered}[/tex]

The volume is 15.08 cm³.

ANSWER:

• 1.) 5.2 cm

,

• 2.) 2.9 cm

,

• 3.) 15.6 cm²

,

• 4.) 34.86 cm²

,

• (5). 50.46 cm²

,

• 6). 15.08 cm³.