Which sequence of transformations will change figure PQRS to figure P'Q'R'S'?

Explanation:
A counterclockwise rotation about the origin by 90 degrees rule is:
[tex](x,y)\rightarrow(-y,x)[/tex]The reflection about the x-axis is:
[tex](x,y)\rightarrow(x,-y)[/tex]If we take for example point P (-3, -2) we can see it ends at P'(2,3). The counterclockwise rotation about the origin by 90º gives:
[tex](-3,-2)\rightarrow(2,-3)[/tex]And now with a reflection about the x-axis:
[tex](2,-3)\rightarrow(2,3)[/tex]Which is point P'
Answer:
Counterclockwise rotation about the origin by 90 degrees followed by reflection about the x-axis