Respuesta :

Given:

[tex]\sum_{n\mathop{=}2}^812(0.4)^{n+1}[/tex]

Required:

Sum of the numbers

Explanation:

Let

[tex]A_n=\sum_{n\mathop{=}2}^812(0.4)^{n+1}[/tex]

when n = 2, Aₙ becomes

[tex]A_2=12(0.4)^{2+1}=12\times(0.4)^3=0.768[/tex]

when n = 3, Aₙ becomes

[tex]A_3=12(0.4)^{3+1}=12\times(0.4)^4=0.3072[/tex]

when n = 4, Aₙ becomes

[tex]A_4=12(0.4)^{4+1}=12\times0.4^5=0.12288[/tex]

when n = 5, Aₙ becomes

[tex]A_5=12(0.4)^{5+1}=12\times0.4^6=0.049152[/tex]

when n = 6, Aₙ becomes

[tex]A_6=12(0.4)^{6+1}=12\times0.4^7=0.0196608[/tex]

when n = 7, Aₙ becomes

[tex]A_7=12(0.4)^{7+1}=12\times0.4^8=0.007866432[/tex]

when n = 8, Aₙ becomes

[tex]A_8=12(0.4)^{8+1}=12\times0.4^9=0.003145728[/tex]

So now,

[tex]\begin{gathered} A=A_1+A_2+A_3+A_4+A_5+A_6+A_7+A_8 \\ \\ A=0.768+0.3072+0.12288+0.049152+0.0196608+0.00786432+0.003145728 \\ \\ A=1.277902848\approx1.28 \end{gathered}[/tex]

Final answer:

The