Respuesta :

[tex]y=\frac{3}{2}x+\frac{19}{2}[/tex]

Explanation

Step 1

we have a perpendicular line, its slope is

[tex]\begin{gathered} y=\frac{-2}{3}x+5 \\ \text{slope}=\frac{-2}{3} \end{gathered}[/tex]

two lines are perpendicular if

[tex]\begin{gathered} \text{slope}1\cdot\text{ slope2 =-1} \\ \text{then} \\ \text{slope}1=\frac{-1}{\text{slope 2}} \end{gathered}[/tex]

replace

[tex]\text{slope1}=\frac{\frac{-1}{1}}{\frac{-2}{3}}=\frac{-3}{-2}=\frac{3}{2}[/tex]

so, our slope is 3/2

Step 2

using slope=3/2 and P(-5,2) find the equation of the line

[tex]\begin{gathered} y-y_0=m(x-x_0) \\ y-2=\frac{3}{2}(x-(-5)) \\ y-2=\frac{3}{2}(x+5) \\ y-2=\frac{3}{2}x+\frac{15}{2} \\ y=\frac{3}{2}x+\frac{15}{2}+2 \\ y=\frac{3}{2}x+\frac{19}{2} \end{gathered}[/tex]