Let f(x)= 1/x-2 and g(x)=5/x+2Find the following functions. Simplify your answers.F(g(x))=g(f(x))=

Given:
[tex]\begin{gathered} f(x)\text{ = }\frac{1}{x\text{ - 2}} \\ g(x)\text{ = }\frac{5}{x}\text{ + 2} \end{gathered}[/tex]To find:
a) f(g(x)) b) g(f(x))
[tex]\begin{gathered} a)\text{ f\lparen g\lparen x\rparen\rparen: we will substitue x in f\lparen x\rparen with g\lparen x\rparen} \\ f(g(x))\text{ = }\frac{1}{(\frac{5}{x}+2)-2} \\ \\ f(g(x))\text{ = }\frac{1}{(\frac{5+2x}{x})-2} \\ \\ f(g(x))\text{ = }\frac{1}{(\frac{5+2x-2x}{x})}\text{ = }\frac{1}{\frac{5}{x}} \\ \\ f(g(x))\text{ = }\frac{x}{5} \end{gathered}[/tex][tex]\begin{gathered} b)\text{ g\lparen f\lparen x\rparen\rparen: we will substitue x in g\lparen x\rparen with f\lparen x\rparen} \\ g(f(x))\text{ = }\frac{5}{\frac{1}{x-2}}+2 \\ \\ g(f(x))\text{ = }\frac{5(x\text{ -2\rparen}}{1}+2 \\ \\ g(f(x))\text{ = }5(x\text{ -2\rparen}+2\text{ = 5x - 10 + 2} \\ \\ g(f(x))\text{ = 5x - 8} \end{gathered}[/tex]