List the angle measures of △VWX in order from smallest to largest. Assume that t is a positive number.

Explanation
To begin with, we will first have to obtain the length of side VX
[tex]VX^2=WX^2+VW^2-2\times WX\times VWcosw[/tex]In our case
[tex]\begin{gathered} WX=28t \\ VW=95t \\ w=94^0 \end{gathered}[/tex]Thus
[tex]\begin{gathered} VX^2=(28t)^2+(95t)^2-2\times(28t\times95t)cos94 \\ \\ VX^2=784+9025+371.104 \\ VX^2=100180.10 \\ \\ VX=100.90t \end{gathered}[/tex]Next, we will determine the angles at V and X
using sine rule
[tex]\begin{gathered} \frac{sin94}{100.9t}=\frac{sinV}{28t} \\ \\ sinV=\frac{28t\times sin94}{100.9t} \\ \\ sinV=0.27683 \\ \\ V=16.07^0 \\ \end{gathered}[/tex]Then, we will get the measure at X
[tex]180^0-16.07^0-94=69.93^0[/tex]Therefore, the order from smallest to largest angles will be
m
OR
m