The vertices of a figure are A(1, -1), B(5, -6), and C(1, - 6). Rotate the figure 90° counterclockwise about the origin. Find the coordinates of the image. Polygon

A'(1,1)
B' (6,5)
C' (6,1)
Explanation
Step 1
Let
A(1,-1)
B(5,-6)
C(1,-6)
Step 2
find the image (A'B'C')
When rotating a point 90 degrees counterclockwise about the origin our point A(x,y) becomes A'(-y,x). In other words, switch x and y and make y negative.
Hence
[tex]\begin{gathered} A\mleft(1,-1\mright)\rightarrow A^{\prime}(1,1) \\ B(5,-6)\rightarrow B^{\prime}(6,5) \\ C(1,-6)\rightarrow C^{\prime}(6,1) \end{gathered}[/tex]so, the coordinates of the image are
A'(1,1)
B' (6,5)
C' (6,1)
I hope this helps you