Respuesta :
In order to determine the speed of the Earth, proceed as follow:
Consider that the centripetal force must be equal to the gravitational force between the Earth and the Sun (because guarantees the stability of the system):
[tex]F_g=F_c[/tex]Fg is the gravitational force and Fc the centripetal force. The expressions for each of these forces are:
[tex]\begin{gathered} F_g=\text{G}\frac{\text{mM}}{r^2} \\ F_c=ma_c=m\frac{v^2}{r} \end{gathered}[/tex]where,
G: Cavendish's constant = 6.67*10^-11 Nm^2/kg^2
m: Earth's mass = 5.97*10^24 kg
M: Sun's mass = 1.99*10^30kg
v: speed of Earth around the Sun = ?
r: distance between the center of mass of Earth and Sun = 1.49*10^8km = 1.49*10^11 m
Equal the expressions for Fg and Fc, solve for v, replace the previous values of the parameters and simplify:
[tex]\begin{gathered} \text{G}\frac{\text{mM}}{r^2}=m\frac{v^2}{r} \\ v^{}=\sqrt[]{\frac{GM}{r}} \\ v=\sqrt[]{\frac{(6.67\cdot10^{-11}N\frac{m^2}{\operatorname{kg}^2})(1.99\cdot10^{30}kg)}{1.49\cdot10^{11}m}} \\ v\approx29846.7\frac{m}{s} \end{gathered}[/tex]Hence, the speed of the Earth around the Sun is approximately 29846.7m/s