Step 1: Concept
To find the equation of a line, use the two points form equation of a line formula below.
[tex]\frac{y-y_1}{x-x_1}\text{ = }\frac{y_2-y_1}{x_2-x_1}[/tex]Step 2:
Write the given data
[tex]\begin{gathered} (x_1,y_1)\text{ = ( 6, 39 )} \\ (x_2,y_2\text{ ) = ( -5, -49 )} \end{gathered}[/tex]Step 3:
Substitute the values to find the equation of a line.
[tex]\begin{gathered} \frac{y\text{ - 39}}{x\text{ - 6}}\text{ = }\frac{-49\text{ - 39}}{-5\text{ - 6}} \\ \frac{y\text{ - 39}}{x\text{ - 6}}\text{ = }\frac{-88}{-11} \\ \frac{y\text{ - 39}}{x\text{ - 6}}\text{ = 8} \\ y\text{ - 39 = 8(x - 6)} \\ y\text{ - 39 = 8x - 48} \\ y\text{ = 8x - 48 + 39} \\ \\ y\text{ = 8x - 9} \end{gathered}[/tex]Final answer
y = [ 8 ]x + [ -9 ]