Respuesta :

msm555

Answer:

3. 376.95cm^2

14. 14.5 yd^2

Step-by-step explanation:

3.

no. of side (n)=10

length of one side(s)=7 cm

Perimeter(p)=n*s=10*7=70 cm

Now finding apothem(a),

[tex]\bold{apothem(a)=\frac{s}{2Tan(\frac{180^o}{n})}}[/tex]

by substituting value, we get,

[tex]\bold{apothem(a)=\frac{7}{2Tan(\frac{180^o}{10})}=10.77cm}[/tex]

Now, we have

[tex]Area=\frac{P*a}{2}[/tex]

substituting value:

[tex]Area=\frac{70*10.77}{2}=\bold{376.95 cm^2}[/tex]

[tex]\hrulefill[/tex]

4.

no. of side (n)=7

length of one side(s)=2 yd

Perimeter(p)=n*s=7*2=14 cm

Now finding apothem(a),

[tex]\bold{apothem(a)=\frac{s}{2Tan(\frac{180^o}{n})}}[/tex]

by substituting value, we get,

[tex]\bold{apothem(a)=\frac{2}{2Tan(\frac{180^o}{7})}=2.076yd}[/tex]

Now, we have

[tex]Area=\frac{P*a}{2}[/tex]

substituting value:

[tex]Area=\frac{14*2.076}{2}=\bold{14.5yd^2}[/tex]

[tex]\hrulefill[/tex]

Answer:

3)  377.0 cm² (nearest tenth)

4)  14.5 yd² (nearest tenth)

Step-by-step explanation:

To find the areas of the given regular polygons, first determine their side lengths and apothems, then use the area formula:

[tex]\boxed{A=\dfrac{n\cdot s\cdot a}{2}}[/tex]

Question 3

The given diagram shows a ten-sided regular polygon with a side length measuring 7 cm. Therefore:

  • Number of sides: n = 10
  • Side length: s = 7

The formula for the apothem of a regular polygon is:

[tex]\boxed{\begin{minipage}{5.5cm}\underline{Apothem of a regular polygon}\\\\$a=\dfrac{s}{2 \tan\left(\dfrac{180^{\circ}}{n}\right)}$\\\\where:\\\phantom{ww}$\bullet$ $s$ is the side length.\\ \phantom{ww}$\bullet$ $n$ is the number of sides.\\\end{minipage}}[/tex]

Therefore, to find an expression for the apothem, a, of the given regular polygon, substitute the values of s and n into the apothem formula:

[tex]\implies a=\dfrac{7}{2 \tan\left(\dfrac{180^{\circ}}{10}\right)}[/tex]

[tex]\implies a=\dfrac{7}{2 \tan\left(18^{\circ}\right)}[/tex]

The formula for the area of a regular polygon is:

[tex]\boxed{\begin{minipage}{6cm}\underline{Area of a regular polygon}\\\\$A=\dfrac{n\cdot s\cdot a}{2}$\\\\where:\\\phantom{ww}$\bullet$ $n$ is the number of sides.\\ \phantom{ww}$\bullet$ $s$ is the length of one side.\\ \phantom{ww}$\bullet$ $a$ is the apothem.\\\end{minipage}}[/tex]

Therefore, to find the area of the given regular polygon, substitute the values of n, s and a into the area formula and solve for A:

[tex]\implies A=\dfrac{10 \cdot 7 \cdot \dfrac{7}{2 \tan\left(18^{\circ}\right)}}{2}[/tex]

[tex]\implies A=\dfrac{245}{2\tan\left(18^{\circ}\right)}}[/tex]

[tex]\implies A=377.0\; \sf cm^2\;(nearest\;tenth)[/tex]

Therefore, the area of the given regular polygon is 377.0 cm² (nearest tenth).

[tex]\hrulefill[/tex]

Question 4

The given diagram shows a seven-sided regular polygon with a side length measuring 2 yds. Therefore:

  • Number of sides: n = 7
  • Side length: s = 2

The formula for the apothem of a regular polygon is:

[tex]\boxed{\begin{minipage}{5.5cm}\underline{Apothem of a regular polygon}\\\\$a=\dfrac{s}{2 \tan\left(\dfrac{180^{\circ}}{n}\right)}$\\\\where:\\\phantom{ww}$\bullet$ $s$ is the side length.\\ \phantom{ww}$\bullet$ $n$ is the number of sides.\\\end{minipage}}[/tex]

Therefore, to find an expression for the apothem, a, of the given regular polygon, substitute the values of s and n into the apothem formula and solve for a:

[tex]\implies a=\dfrac{2}{2 \tan\left(\dfrac{180^{\circ}}{7}\right)}[/tex]

[tex]\implies a=\dfrac{1}{ \tan\left(\dfrac{180^{\circ}}{7}\right)}[/tex]

The formula for the area of a regular polygon is:

[tex]\boxed{\begin{minipage}{6cm}\underline{Area of a regular polygon}\\\\$A=\dfrac{n\cdot s\cdot a}{2}$\\\\where:\\\phantom{ww}$\bullet$ $n$ is the number of sides.\\ \phantom{ww}$\bullet$ $s$ is the length of one side.\\ \phantom{ww}$\bullet$ $a$ is the apothem.\\\end{minipage}}[/tex]

Therefore, to find the area of the given regular polygon, substitute the values of n, s and a into the area formula and solve for A:

[tex]\implies A=\dfrac{7\cdot 2\cdot \dfrac{1}{ \tan\left(\dfrac{180^{\circ}}{7}\right)}}{2}[/tex]

[tex]\implies A=\dfrac{7}{ \tan\left(\dfrac{180^{\circ}}{7}\right)}[/tex]

[tex]\implies A=14.5\; \sf yd^2\;(nearest\;tenth)[/tex]

Therefore, the area of the given regular polygon is 14.5 yd² (nearest tenth).