Respuesta :
W = ΔE = 1/2 m (v₂ - v₁)²
W work
E kinetic energy
m mass
v₂ final velocity
v₁ initial velocity
W work
E kinetic energy
m mass
v₂ final velocity
v₁ initial velocity
Following are the calculation to the given points:
Given:
[tex]a= 8.5 \times 10^5\ kg[/tex]
To find:
points=?
Solution:
Using formula:
[tex]\to W = \Delta E = \frac{1}{2} m (v^2_2 - v^2_1)[/tex]
For point a:
[tex]\to W = \Delta E = \frac{8.5 \times 10^{5}\ kg}{2} (15^2 -10^2)[/tex]
[tex]= 4.25 \times 10^{5} \times (225 -100)\\\\= 4.25 \times 10^{5} \times (125)\\\\= 53.125 \times 10^6\ Joules\\\\= 53.125\ MJ\\\\[/tex]
For point b:
[tex]\to W = \Delta E = \frac{8.5 \times 10^{5}\ kg}{2} (20^2 -15^2)[/tex]
[tex]= 4.25 \times 10^{5} \times (400 -225)\\\\= 4.25 \times 10^{5} \times (175)\\\\= 74.375 \times 10^6\ Joules\\\\= 74.375\ MJ\\\\[/tex]
For point c:
[tex]\to W = \Delta E = \frac{1}{2} m (v^2_2) - \frac{1}{2} m(v^2_1)[/tex]
[tex]\to W = \Delta E = (\frac{8.5 \times 10^{5}\ kg}{2} (0^2) - \frac{8.5 \times 10^{5}\ kg}{2} (20^2))\\[/tex]
[tex]= (4.25 \times 10^{5} \times (0^2) - 4.25 \times 10^{5} \times (400))\\\\= (0) - 4.25 \times 10^{5} \times (400)\\\\= - 1700 \times 10^{5} \\\\= - 170 \times 10^{6} \ Joules \\\\= - 170 \ MJ\\[/tex]
Learn more:
brainly.com/question/919750