Respuesta :
Not sure what exactly ur looking for?
but if ur looking for the midpoint I can show u.
formula: m = (x+x)/2, (y+y)/2
m = (6+-6)/2 , (-3+3)/2
m = (0)/2 , (0)/2
m = (0,0)
midpoint is (0,0)
but if ur looking for the midpoint I can show u.
formula: m = (x+x)/2, (y+y)/2
m = (6+-6)/2 , (-3+3)/2
m = (0)/2 , (0)/2
m = (0,0)
midpoint is (0,0)
Answer:True
Step-by-step explanation:
Given
AB has endpoints A[tex]\left ( 6,-3\right ) and B\left ( -6,3\right )[/tex]
then midpoint of AB is
[tex]X=\left ( \frac{x_1+x_2}{2}\right )[/tex]
[tex]Y=\left ( \frac{y_1+y_2}{2}\right )[/tex]
[tex]X=\frac{6-6}{2} =0[/tex]
[tex]Y=\frac{-3+3}{0}=0[/tex]
Thus Mid point has the same co-ordinates as origin therefore its midpoint is origin
One point is reflection of another about y=x line