Respuesta :

If

[tex]\mathbf A=\begin{bmatrix}6&-12\\-2&4\end{bmatrix}[/tex]

then notice that the columns satisfy

[tex]\begin{bmatrix}6\\-2\end{bmatrix}=-\dfrac12\begin{bmatrix}-12\\4\end{bmatrix}\implies\begin{bmatrix}6\\-2\end{bmatrix}+\dfrac12\begin{bmatrix}-12\\4\end{bmatrix}=\mathbf 0[/tex]

which means the columns are linearly dependent and thus only span a subspace of [tex]\mathbb R^2[/tex].

Whether you actually meant to write

[tex]\mathbf A=\begin{bmatrix}6&-2\\-12&4\end{bmatrix}[/tex]

would not alter the answer - the columns do not span [tex]\mathbb R^2[/tex] - but this time

[tex]\begin{bmatrix}6\\-12\end{bmatrix}=-\dfrac13\begin{bmatrix}-2\\4\end{bmatrix}[/tex]