pa18
contestada

WILL MARK AS BRAINLIEST

Part 1.] Match the y-coordinate with the given x-coordinate for the equation [tex]y=log_{10} x[/tex]
1.) 1/100. A.) 0
2.) 1/10. B.) -2
3.) 1. C.) 2
4.) 10. D.) -1
5.) 100. E.) 1

Part 2.] Match the y-coordinate with the given x-coordinate for the equation [tex]y=log_{2} x[/tex]
1.) 8. A.) 2
2.) 4. B.) 1
3.) 2. C.) 3
4.) 1. D.) 0
5.) 1/2. E.) -1

Respuesta :

These are two parts with 5 questions each.

Part 1.] Match the y-coordinate with the given x-coordinate for the equation [tex]y=log_{10}x[/tex]

If you use this property you can match all the coordinates:

[tex]log_{a}a^{x}=x[/tex]

Because that means that: 
[tex]log_{10}(10)^{x}=x[/tex]

So, just write each x-coordinate as a power of 10.

1.) 1/100 = 10^(-2)
2.) 1/10 = 10 ^ (-1)
3.) 1 = 10 ^ (0)
4.) 10 = 10^(1)
5.) 100 = 10^(2)

With that  you find:

x-coordinate     y-coordinate
                         [tex]y=log_{10}x[/tex]

1/100                [tex]log_{10}(1/100) = - 2 [/tex] => 1) matches B)

1/10                  [tex]log_{10}(1/10)=-1[/tex] => 2) matches D)

1                       [tex]log_{10}1=0[/tex] => 3) matches A)

10                     [tex]log_{10}10=1[/tex] => 4) matches E)

100                   [tex]log_{10}100=2[/tex] => 5) matches C)

Part 2.] Match the y-coordinate with the given x-coordinate for the equation [tex]y=log_{2}x[/tex]

Using the same property of logarithms:
[tex]log_{2}2^{x}=x[/tex]

And:

1.) 8 = 2^(3)

2.) 4 = 2^(2)

3.) 2 = 2^(1)

4.) 1 = 2^(0)

5.) 1/2 = 2^(-1)

So:

x                y =
[tex]y=log_{2}x[/tex]

8                [tex]y=log_{2}8=3[/tex] => matches C)

4
                 [tex]log_{2}4=2[/tex]=> matches A)

2
                 [tex]log_{2}2=1[/tex] => matches B)
 
1
                 [tex]log_{2}1=0[/tex] => matches D)

1/2
              [tex]log_{2}(1/2)=-1[/tex] => matches E)