Answer
given,
R = 1-kΩ = 1000 Ω
C = 1-μF
L = 0.2-H
V = V_max sin( ω t)
comparing
V = 150 sin ( 377 t)
ω = 377
[tex]\chi_c = \dfrac{1}{\omega C}[/tex]
[tex]\chi_c = \dfrac{1}{377 \times 1 \times 10^{-6}}[/tex]
[tex]\chi_c = 2652.5\Omega [/tex]
[tex]\chi_L =377 \times 0.2[/tex]
[tex]\chi_L =75.4\ \Omega[/tex]
Impedance,
[tex]Z = \sqrt{R^2+(\chi_L-\chi_c)^2}[/tex]
[tex]Z = \sqrt{1000^2+(75.4 -2652.5)^2}[/tex]
Z = 2764.3 Ω
now,
V_{max} = 150 V
[tex]I_{max} = \dfrac{V}{Z}[/tex]
[tex]I_{max} = \dfrac{150}{2764.3}[/tex]
[tex]I_{max} = 0.0543[/tex]
[tex]I_{max} = 54.3\ mA[/tex]