Respuesta :

Answer:

Part a) [tex]AB=17\ m[/tex]

Part b) [tex]AC=20.8\ m[/tex]

Step-by-step explanation:

see the attached figure with letters to better understand the problem

Part a) Find the length AB

Applying the Pythagoras Theorem in the right triangle ABH

[tex]AB^2=AH^2+HB^2[/tex]

where

AB is the hypotenuse (the greater side)

AH and HB are the legs of the right triangle

we have

[tex]AH=FG=8\ m[/tex]

[tex]HB=GB-ED=26-11=15\ m[/tex]

substitute the values

[tex]AB^2=8^2+15^2[/tex]

[tex]AB^2=289[/tex]

[tex]AB=17\ m[/tex]

Part a) Find the length AC

Applying the Pythagoras Theorem in the right triangle ABC

[tex]AC^2=AB^2+BC^2[/tex]

where

AC is the hypotenuse (the greater side)

AB and BC are the legs of the right triangle

we have

[tex]BC=12\ m[/tex]

[tex]AB=17\ m[/tex]

substitute

[tex]AC^2=17^2+12^2[/tex]

[tex]AC^2=433[/tex]

[tex]AC=20.8\ m[/tex]

Ver imagen calculista