[tex] \Large \text {Answer:} [/tex]
[tex] \boxed {\text{Heads toward}\: 320.45\degree\: \text {at 157.70 km/h}} [/tex]
[tex] \Large \text {Solution:} [/tex]
[tex] V_x = 42\cos(215\degree) + 152\cos(125\degree) \\ V_x \approx -121.588 \: \text{km/h}[/tex]
[tex] V_y = 42\sin(215\degree) + 152\sin(125\degree) \\ V_y \approx 100.421\: \text{km/h} [/tex]
[tex] V = \sqrt{{V_x}^2 + {V_y}^2} \\ V = \sqrt{(-121.588)^2 + (100.421)^2} \\ V \approx 157.70\: \text {km/h} \\ \\ \theta = \tan^{-1}\left (\dfrac{V_y}{V_x}\right ) = \tan^{-1}\left (\dfrac{100.421}{-121.588}\right ) \\ \theta \approx -39.55\degree\: \text{or}\: 320.45\degree [/tex]